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An error budget analysis is presented which quantifies the effects of different
error sources in the orbit determination process when the enhanced orbit determi-

nation filter, recently developed, is used to reduce radio metric data. The enhanced

filter strategy differs from more traditional filtering methods in that nearly all of

the principal ground system calibration errors affecting the data are represented as

filter parameters. Error budget computations were performed for a Mars Observer

interplanetary cruise scenario for ca.ses in which only X-band (8.4-Gltz) Doppler
data were used to determine the spacecraft's orbit, X-band ranging data were used

exclusively, and a combined set in which the ranging data were used in addition
to the Doppler data. In alt three cases, the filter model was assumed to be a cor-

rect representation of the physical world. Random nongravitational accelerations

were found to be the largest source of error contributing to the individual error

budgets. Other significant contributors, depending on the data strategy used, were
solar-radiation pressure coefficient uncertainty, random Earth-orientation calibra-

tion errors, and Deep Space Network (DSN) station location uncertainty.

I. Introduction

Development of improved navigation techniques which

utilize radio Doppler and ranging data acquired from

NASA's Deep Space Network (DSN) have received con-

siderable study in recent years, as these data types are
routinely collected in tracking, telemetry, and command

operations. Furthermore, the availability of high-speed

workstation computers has made possible the use of com-

putationally intensive data processing modes for reducing

all radio metric data. A new sequential data filtering strat-

egy currently under study is the enhanced orbit determi-
nation filter, in which most if not all of the major system-

atic ground system calibration error sources are treated

as filter (estimated) parameters, along with the spacecraft

trajectory parameters. This strategy differs from the cur-

rent practice, in which the ground system calibration error
sources are represented as unestimated bias parameters,

accounted for only when computing the error covariance

of the filter parameters.
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The motivation behind the enhanced filter is not so

much to improve upon the a priori ground system cali-

brations, but to incorporate a more accurate model of the

physical world into the filter [1]. Previous studies suggest

that medium-to-high navigation accuracies (40 to 15 nrad

in an angular sense) are achievable when the enhanced or-
bit determination filter is used in conjunction with X-band

(8.4-GHz) Doppler and ranging [2]. Studies are also being

conducted to demonstrate the utility of this new filtering
strategy with actual flight data acquired from tile Galileo

spacecraft. I Critical to understanding the potential bene-

fits and/or deficiencies of this type of orbit determination

filter is the development of an error budget, which cata-

logs the contributions of a particular error source or group
of error sources to the estimation errors. This form of sen-

sitivity analysis identifies the major sources of error and

where future work may need to be focused in order to im-

prove overall navigation system performance.

This article first reviews the fundamental concepts of

reduced-order filtering theory, which are essential for sen-

sitivity analysis and error budget development. The the-

ory is then applied to the development of an error bud-

get for a Mars Observer interplanetary cruise scenario in
which the enhanced orbit determination filter is used to

reduce X-band Doppler and ranging data. The trajectory

characteristics of this scenario are reviewed along with the

data-acquisition strategies. The filter model is described

and error budgets are given for three different data strate-

gies: X-band Doppler only, X-band ranging only, and X-
band Doppler plus ranging. For this initial study, the fil-

ter model is assumed to be a correct representation of the

physical world.

II. Reduced-Order Filtering

In some navigation applications, it is not practical to

implement a full-order or truly optimal filter when the

system model, with all major error and noise sources, is of
high order. This is often the case in applications such as

a multisensor avionics navigation system, in which there

are memory limitations in the onboard flight computer. 2

Moreover, it is implicitly assumed in the development of

the filter equations that exact descriptions of the system
dynamics, error statistics, and tile measurement process

I S. Bhaskaran (personal communication), Navigation Systems Sec-

tion, Jet Propulsion Laboratory, Pasadena, California, October
1993.

2 j. Vagners, Development o] the Minimum Variance Reduced Or-

der (MVRO) Estimator Equations in Upper Triangular-Diagonal

(U-D) Factored Form, Boeing report D229-10602-1 (internal doc-

ument), The Boeing Company, Seattle, Washington, February 21,
1979.

are known; unfortunately, this is rarely true in practice

[3]. Use of reduced-order filtering techniques allows the

analyst to obtain estimates of key parameters of interest,

with reduced computational burden and with lnoderate

complexity in the filter model [3,4]. Thus, reduced-order,

or, suboptimal, filters are the result, of design trade-offs

in which the designer performs a sensitivity analysis to
determine which sources of error are most critical to overall

system performance.

In general, the spacecraft orbit determination process is

executed entirely on the ground and thus flight computer

memory limitations are not a significant factor. Never-

theless, there are reasons for not always using a fidl-order
optimal filter for spacecraft orbit determination. Some of

the reasons include: (1) certain parameters, such as fidu-
cial station locations, may be held fixed in order to define

a reference frame and/or length scale; (2) there may be
a lack of adequate models for an actual physical effect;

(3) the existence of computational limitations when at-

tempting to adjust parameters of high order, such a.s the

coefficients in a gravity field; or (4) if estimated, the com-
puted uncertainty in model parameters would be reduced

far below the level warranted by model accuracy [5,6].

A. Filter Evaluation Modes

There are a number of error analysis methods which

can be used to evaluate filter models and predict filter per-

formance. Reduced-order error analysis techniques enable

an analyst to study the effects of using incorrect a priori

statistics, data-noise/data-weight assumptions, or process
noise models on the filter design. This is usuMly referred

to as the general filter evaluation mode and accomplished

by establishing a fully detailed reference model (a truth

model) against which the behavior of a filter can be com-

pared [5]. If the filter is optimal, then the filter and truth
models coincide. If the filter is suboptimal, then the fil-

ter model is of equal or lower order (i.e., reduced-order)

than the truth model and possibly (but not necessarily)
represents a subset of the states of the truth model [3].

In practice, a fully detailed truth model may be diffi-

cult to develop and thus one typically evaluates a range
of "reasonable" truth models to assess whether the filter

results are especially sensitive to a particular element(s)
of the filtering strategy being used [5]. The objective is

to design a filter model to achieve the bestpossible accu-
racy, but which is also robust, so that its performance will

not be adversely affected by the use of slightly incorrect

filter parameters. In the design process, the filter struc-

ture and the truth model remain fixed while repeated ad-

justments are made to the a priori statistics, data noise
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values,or processnoisevalues,until acceptablebehavior
isachieved[4].

In a specialcaseof reduced-ordererroranalysis,often
referredto asa consider state analysis, various system-
atic error sources are treated as unmodeled parameters

which are not estimated, but whose effects are accounted

for (i.e., "considered") in computing the error covariance of
the estimated parameters [7]. 3 In a consider state analysis,

the sensitivity of the estimated parameter set to various
unmodeled consider parameters can be computed via the

partial derivatives of the state estimate with respect to the
consider parameter set [8]. Depending on the magnitude of

the resulting sensitivities, the filter-computed estimation
error covariance is modified to account for the unmodeled

effects in order to generate a more realistic estimate of pre-

dicted navigation performance. The filter has no knowl-

edge about the contribution of the unmodeled parameters

to the uncertainty in the state estimate since the modi-

fied covariance (the consider eovariance), which includes
effects from both the estimated and consider parameters,
is not fed back to the filter. Reduced-order filters of this

type have been known to experience failure modes, such
as cases in which the addition of data yields an increase

in the consider covariance, or cases when the consider co-

variance propagates to an unreasonably large result over

time. In these instances, it may be necessary to empir-

ically "tune" the filter (e.g., adjust data weights, model

assumptions, etc.) to obtain useful estimates. A mathe-

matical description of these so-called "failure modes" and

suggested remedies is described by Scheeres [6].

B. Optimal and Suboptimal Filter Equations

Restricting the discussion to the filter measurement up-
date equations, the mathematical model presented here is

the covariance form of the measurement update for scalar

measurements. Let _ represent the state estimate and P

represent the error covariance matrix. Using the conven-

tion that "(+)" denotes a postmeasurement update value

and "(-)" denotes a premeasurement update value, the

(optimal) filter measurement update equations for a lin-

ear, sequential estimator are given by

state estimate _(k+' = _(k-) +/_'_ [zk - A._(k -)] (1)

error covariance P_÷)=[I-h'kA,_]P(k -) (2)

3 This is the more traditional filtering method most often used in

practical applications of interplanetary navigation (see introduc-

tory remarks), operationally referred to as the consider option.

(optimal) gain matrix [fk "_-tP(-)aT= _k _k --_ (3)

where zk is the observation vector defined by the mea-

surement model, A,k is the measurement matrix of ob-

servation partial derivatives, I is simply the unit or iden-
= a p(-)A Ttity matrix, and ak _'*k k *k + W_ -1 is the inno-

vations covariance. W_ represents the weighting matrix,

the inverse of which is taken to be the diagonal measure-

ment covariance Rk; thus, for i -- 1, ..., m observations,

W[ 1 - Rk = diag [rl,..., rrn] for measurement variances
rl. 4 The filter equations described by Eqs. (1) through (3)

can be employed without loss of generality, since "whiten-

ing" procedures can be used to statistically decouple the

measurements in the presence of correlated measurement

noise and obtain a diagonal Rk [7]. The gain matrix Kk is

used to update estimates of the filter parameters as each

measurement is processed. Note that Eq. (2) is valid only
for the optimal gain/_'k.

The use of Eq. (2) to compute the error covariance ma-
trix has historically been suspect due to finite computer

word length limitations, s As a result, a frequently utilized

alternative is the stabilized Joseph form of the update, ex-

pressed as

P(+) = (I - I(kA,_) P_-)(I - IfkA,k) T + IfkW['K Tk

(4)

:Although this form of the covariance measurement up-

date is more stable numerically than Eq. (2), it requires a

greater number of computations; however, a further advan-

tage is that it is valid for arbitrary gain matrices; therefore,

I(k in Eq. (4) need not be optimal.

In some cases, the Joseph form of the update may also

be deficient numerically [9]. As a result, factorization

methods have been developed to help alleviate the nu-

merical deficiencies of the measurement update algorithms

[7,10,11]. Specific details of the factorization procedures
will not be discussed here; however, an important obser-

vation from the literature and critical to the general eval-
uation mode of the filter is the observation that Eq. (4)

can be written in an equivalent form as

4 It is assumed that the measurements are corrupted by a vector

of independent, zero-mean Gaussian random noise quantities with

covariance Rk.

5 Recall from optimal estimation theory that the error covaxlance

matrix is defined as the expected value of the mean-square estima-

tion error, Pk ---- E [(Xk -- _k)(Xk -- xk)T].
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(5)

where Kl, is an arbitrary (e.g., suboptimal) gain matrix

and /_'k is the optimal filter gain matrix. This form of

the error covariance measurement update is often referred

to as the suboptimal measurement updale since it includes

a correction based on the gain difference between the fil-

ter evaluation run (which generally assumes an incorrect

model) and the original filter (estimation) run. In the gen-

rM evaluation mode, the filter uses suboptimal gains saved
in an evaluation filter from an earlier filter which is run

purposely with what is believed to be an incorrect model,

in order to generate suboptimal gains [5]. It is this form of

the suboptimal measurement update which will be critical

to the error budget development described in the follow-

ing section. In practice, Eq. (5) is typically mechanized
in a U-D factorized form for numerical stability. A final

note about the filter equations: Although the equations

for the time update were not presented, it is important

to note that the time update in the general filter evalua-

tion mode takes the same form as the original filter time

update, except that in the presence of process noise model-

ing parameters, the original filter stochastic time constants

and process noise uncertainties are replaced with evalua-
tion mode time constants and process noise terms [5]. 6

III. Mission Scenario, Data Acquisition,

and Filter Modeling Assumptions

A. Mars Observer Interplanetary Cruise Scenario

The Mars Observer spacecraft was launched success-

fully on September 25, 1992, and was scheduled to initiate

the Mars Orbit Insertion (MOI) burn on August 24, 1993;

however, communication with the spacecraft was tragically

lost just days prior to MOI. Despite the loss of the space-

craft, the interplanetary cruise phase of the mission, which
extended from injection to initiation of the MOI burn, rep-

resented a challenging navigation scenario, as the declina-

tion of the Mars Observer at encounter was within 1 deg

of zero. This is a geometry which has historically yielded

relatively poor performance with Doppler tracking, due to

Doppler data's relative insensitivity to some components
of the spacecraft's state in this regime. The Mars Observer

e The software is described in S. C. Wu, W. I. Bertlger, J. S. Bor-

der, S. M. Lichten, R. F. Sunseri, B. G. Williams, P. J. Wolff,
and J. T. Wu, OASIS Mathematical Description, V. 1.0, 3PL D-

3139 (internal document), Jet Propulsion Laboratory, Pasadena,
California, April 1, 1986.

was also the first spacecraft to carry an X-band transpon-

der and the first to rely solely on a single-frequency X-band

telecommunications system. 7 Thus, this scenario repre-

sents a realistic scenario with which to study the relative

merits of using the enhanced orbit determination filter to

reduce X-band Doppler and ranging data.

The trajectory segment selected for this analysis was

taken to be a 182-day time period extending from early

February 1993 to early August 1993, which represented

the longest leg of the interplanetary cruise, and had the

most stringent navigation accuracy requirements in order

to support the final maneuver prior to MOI. The trajectory

characteristics over the time span of the data arc, which

extended from encounter minus 194 (E - 194) days to E

- 12 days, are summarized in Table 1.

B. Data-Acquisition Strategy

A fairly sparse DSN data-acquisition schedule was as-

sumed, containing no more than one or two passes of

Doppler and ranging data per week. Ill all cases, the

data were assumed to be acquired from the DSN's 34-m

high-efficiency (HEF) Deep Space Stations (DSSs) located

near Goldstone, California (DSS 15), Canberra, Australia

(DSS 45), and Madrid, Spain (DSS 65). This reduced level

of coverage is representative of the level anticipated for

telemetry acquisition in future missions such as Pathfinder
and Cassini. The data schedule consisted of one horizon-

to-horizon tracking pass of two-way Doppler and ranging

data acquired from the Madrid site on a weekly basis from

E - 194 days to E - 90 days, two weekly tracking passes

acquired from the Madrid and Canberra sites from E

- 90 days to E - 30 days and from E - 30 days to E

- 12 days (data cutoff), and a single pass per day from all
three DSN sites.

To account for data noise, an assumed one-sigma ran-

dom measurement uncertainty of 0.0126 mm/sec was cho-

sen for two-way Doppler, and for two-way ranging, the
one-sigma random measurement uncertainty was assumed

to be 1 m; these noise variances were used in all cases

in a manner similar to an earlier study [2]. It should be

noted that the data weights quoted here are for the round-

trip range-rate and range, respectively. Both data types
were collected at a rate of one point every 10 rain, and the

noise variances were adjusted by an elevation-dependent

function for all stations, to reduce the weight of the low-

elevation data; furthermore, no data were acquired at ele-
vations of less than l0 deg.

P. B. Esposito, S. W. Demcak, D. C. Roth, W. E. Bollman, and

C. A. Halsell, Mars Observer Project Navigation Plan, Project

Document 642-312, Rev. C (internal docttment), Jet Propulsion

Laboratory, Pasadena, California, June 15, 1990.
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C. Orbit Determination Filter Model

Table 2 summarizes the parameters which make up the

enhanced orbit determination filter model, along with a

priori statistics, steady-state uncertainties for the Gauss-

Markov parameters, and noise densities for the random-

walk parameters, s All of the parameters were treated as

filter (estimated) parameters and grouped into three cate-

gories: spacecraft epoch state, spacecraft nongravitational
force model, and ground system error model. Effects of

uncertainty in the ephemeris and mass of Mars were ne-

glected, as they were believed to be relatively small in this
scenario. 9

The simplified spacecraft nongravitational force model

was based on past experience and modeling spacecraft sim-
ilar to Mars Observer. 1° There were filter parameters rep-

resenting solar radiation pressure forces as well as small

anomalous forces due to gas leaks from valves and pres-

surized tanks, attitude control thruster misalignments, etc.

For processing the two-way ranging data, the filter model
included a stochastic bias parameter associated with each

ranging pass from each station, in order to approximate

the slowly varying, nongeometric delays in ranging mea-
surements that are caused principally by station delay cal-

ibration errors and uncalibrated solar-plasma effects. No

explicit model parameters were employed for the effect of
solar-plasma delays as relatively large (>45 to 60 deg)

Sun-Earth-Probe (SEP) angles were assumed for rang-

ing data acquisition, leading to small (< 1 m) solar plasma
delays) 1

The station location covariance represents the uncer-

tainty in the station location and pole model solutions de-

veloped by Finger and Folkner [13]; this covariance matrix
and its associated station location set were used opera-

tionally by the Mars Observer Navigation Team during

8 For process noise, first-order Gauss-Markov (exponentialy corre-

lated) random processes were assumed. The process noise covari-

ance is given by q = (1 - m2)a_3 where rn = exp[-(tj+l - t:)/r].

Here, t 3 is the start time for the jth batch and T is the associated
time constant. The term crss is the steady-state uncertainty, i.e.,
the noise level that would be reached if the dynamical system were

left undisturbed for a time much greater than r. For the random

walk, both ass and _- are unbounded (¢ = co) and a steady-state
is never reached. The noise density for the random walk is char-

acterized by the rate of change of the process noise covariance,

q = Aq/At where At is the batch size and Aq is the amount of

noise added per batch. For this analysis, At = 10 rain.

9 E. M. Standish, "Updated Covariance of Mars for DE234," JPL In-

teroffice Memorandum 314.6-1452 (interned document), Jet Propul-

sion Laboratory, Pasadena, California, July 27, 1992.

10 Esposito, op. cit.

11 A recent study of a simple solar plasma delay model and its use in

the reduction of precision ranging data is presented in [12].

interplanetary cruise) 2 Additionally, three exponentially

correlated process noise parameters were included to ac-

count for the dynamical uncertainties in the Earth's pole
location and rotation period. The tropospheric and iono-

spheric zenith delay calibration uncertainties were repre-
sentative of current calibration accuracy. A sequential

U-D factorized estimation scheme was employed, in order
to track the short-term fluctuations in the transmission

media.

IV. Error Budget Calculations

The purpose of developing an error budget is to deter-
mine the contribution of individual error sources, or groups

of error sources, to the total navigational uncertainty. In

general, an error budget is a catalog of the contributions
of all of the error sources which contribute to errors in

the filter estimate at a particular point in time, whether

explicitly modeled in the filter or not [3]. For this first

analysis, it is assumed that the filter is "optimal," i.e.,
that the truth model and filter model are the same. This

implies that the filter model is an accurate representation

of the physical world.

In order to establish an error budget, it is necessary

to compute a time history of the filter gain matrix for

the complete filter model and to subsequently use these

gains in the sensitivity calculations [Eq. (4)] during re-

peated filter evaluation mode runs, in which only selected

error sources or groups of error sources are "turned on"

in each particular run. In this way, the individual con-
tributions of each error source or group of error sources

to the total statistical uncertainty obtained for all of the

filter parameters for a given radio metric data set can be
established.

Using the reduced data schedule and enhanced filter

model derived for the Mars Observer interplanetary cruise
scenario described in Section III, orbit determination error

statistics were computed for DSN Doppler-only, ranging-

only, and Doppler-plus-ranging data sets. The orbit deter-
mination statistics were propagated to the nominal time

of Mars encounter and expressed as dispersions in a Mars-

centered aiming plane, or B-plane, coordinate system; 13

12 W. M. Folkner, "DE234 Station Locations and Covariance for

Mars Observer," JPL Interoffice Memorandum 335.1-92-013 (inter-

nal document), Jet Propulsion Laboratory, Pasadena, California,
May 26, 1992.

13 The aiming plane, or B-plane, coordinate system is defined by three

unit vectors: S, T, and R; S is parallel to the spacecraft velocity

vector relative to Mars at the time of entry into Mars' gravitational

sphere of influence, W is parallel to the Martian equatorial plane,

and 1_ completes an orthogonal triad with S and W. The aim point
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specifically, the one-sigma magnitude uncertainty of the

miss vector, resolved into the respective miss components

B.R (normal to Martian equatorial plane) and B*T (par-
allel to Martian equatorial plane), and the one-sigma

uncertainty in the linearized time-of-flight (LTOF). The

LTOF defines the time from encounter (point of closest ap-

proach) and specifies what the time of flight to encounter
would be if the magnitude of the miss vector were zero. Ill

some cases, the errors were expressed as dispersion ellipses

in the B-plane to graphically illustrate the contributions

of the most statistically significant groups of error sources.

A. Doppler Only

With the enhanced filter, the Doppler data allowed

determination of the BeR____component of the miss vec-
tor to about 22 km and the Be_T component to about

46 km, with the LTOF determined to approximately 7 sec

(_16 km in positional uncertainty). These results are sum-
marized in Table 3, which gives the magnitude of the B-

plane dispersions around the nominal MOI aim point (in

the form of an error budget) for all groups of truth/filter
model error sources to the total statistical uncertainty, in

a root-sum-square sense. (Recall that for this analysis, the
truth model and filter model are the same.) As seen from

the table, the most dominant error source groups were

the random nongravitational accelerations, followed by so-
lar radiation pressure coefficient uncertainty, and random
Earth-orientation calibration errors. A graphical illustra-

tion of these contributions is shown in Fig. 1, in terms of B-

plane dispersion ellipses. For this encounter scenario, the
direction of the Earth-spacecraft range is closely aligned

with the semimajor axis of the B-plane dispersion ellipse.

The Doppler data alone were able to determine this com-

ponent of the solution to only about 50 km.

B. Ranging Only

Orbit solutions computed with ranging data using the
enhanced filter are summarized in Table 4, also in error

budget format. In this case, the ranging data were able
to determine the B.R component of the miss vector to
about 12 km and the BeT component to about 6 km.

The LTOF accuracy for this case was not much better

than the Doppler-only case, an improvement from 7 sec to

approximately 6 sec (-_14 km in positional uncertainty).
The most dominant error source groups for this data strat-

egy were random nongravitational accelerations, as in the
Doppler-only case, followed by measurement (data) noise,
and DSN station location uncertainty. Although range

for planetary encounter is defined by the miss vector B, which ties

in the T-11. plane and specifies where the point of closest approach
would-be if the target planet had no mass and did not deflect the

flight path.

bias parameters were included in the ground system error

model, they did not adversely affect the performance of

the enhanced filter. Figure 2 illustrates these major error
sources in terms of B-plane dispersion ellipses along with

the full filter-generated root-sum-square uncertainty. The

orientation of the full filter dispersion ellipse is rotated

about 90 deg from the Doppler-only result, indicating the

strength with which the ranging data are able to deter-
mine the Earth-spacecraft range component of the trajec-

tory. In this case, the semimajor axis is oriented roughly
normal to the Earth-Mars line.

C. Doppler Plus Ranging

For the final case in which both Doppler and ranging

data were used, the Bo__R component of the miss vector

was determined to about 9 km and the BoT component to

about 5 kin, with the LTOF determined to approximately

4 sec (,,_9 km in positional uncertainty). Error budget cal-
culations for this case are summarized in Table 5. Similar

to the results for the Doppler-only and ranging-only data

strategies, random nongravitational accelerations were the
dominant error source group. The next two most signifi-

cant error source groups were Earth-orientation calibration
error and DSN station location uncertainty, respectively.

As with the ranging-only case, solar radiation pressure co-
efficient uncertainty and random ranging delay calibration

errors were of roughly the same magnitude, but did not

contribute to the total error budget as much as the previ-

ously cited error sources. B-plane dispersion ellipses are

also provided (see Fig. 3), illustrating the contributions
of the major error source groups to the total root-sum-

square error and the orientation of the ellipses in the aim-

ing plane. In this case, the accuracy with which the Earth-

spacecraft range component at encounter was determined

was roughly 11 kin.

V. Sensitivity Curves

Another benefit of the linearity assumptions used to

develop error budgets is that sensitivity curves can read-

ily be generated. Sensitivity curves graphically illustrate

the effects of using different prescribed values of the error
source statistics on the estimation errors, with the assump-

tion that the filter model remains unchanged. The proce-

dure for sensitivity curve development is straightforward

and, although described in [3], is repeated here for com-

pleteness: (1) subtract the contribution of the error source
under consideration from the total mean-square navigation

error; (2) to compute the effect of changing the error source
by a preset scale factor, multiply its contributions to the

mean-square errors by the square of the scale factor value;

(3) replace the original contribution to mean-square error
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by the one computed in the previous step; and (4) take

the square root of the newly computed mean-square error

to obtain the total root-sum-square navigation error.

Several cases were used to generate sensitivity curves

for the major groups of error sources in the filter model;

for example, Figs. 4 through 6 give the sensitivity curves

for the random nongravitational accelerations and illus-

trate the sensitivity of this error source group to various

scale factor values. Recall that random nongravitational

accelerations dominated the error budget in all three data

strategy cases considered (c.f., Section IV). As seen from

the figures, a quadratic growth in the sensitivity is evident

for scale factor values ranging from 1 to 3, and a nearly

linear growth is exhibited for scale factor values ranging
from 4 to 10. On average, for all three data strategies con-

sidered, an order of magnitude increase in the preset scale
factor resulted in about a factor of three to six increase in

the root-mean-square estimation errors.

VI. Summary and Conclusions

A sensitivity analysis was conducted for a recently de-

veloped sequential data filtering strategy referred to as the

enhanced orbit determination filter. In practice, the en-

hanced filter attempts to represent all or nearly all of the

principal ground system error sources affecting radio met-

ric data types as filter parameters. Reduced-order filtering
methods were reviewed and utilized to perform the sensi-

tivity analysis, and, in particular, to develop navigation

error budgets for three different data acquisition strate-

gies. The mission scenario assumed for the analysis was

based on the Mars Observer interplanetary outer cruise

phase. Two-way radio Doppler and ranging were the data
types analyzed, with assumed accuracies chosen to reflect

actual performance of the DSN's X-band tracking system,

as observed in recent interplanetary missions such as Mag-

ellan, Ulysses, and Mars Observer.

Error budget computations performed for the assumed

mission scenario revealed that the most significant er-

ror source for all three data-acquisition strategies stud-

led (i.e., Doppler-only, ranging-only, and Doppler-plus-

ranging) was spacecraft random nongravitational acceler-
ations, indicating that, for the reference error model, the

enhanced filter is most sensitive to mismodeling of small

anomalous forces affecting the spacecraft.. Other sources

of error which had a significant impact on the overall er-

ror budget were, in the case of Doppler-only navigation,

solar-radiation pressure coefficient uncertainty and Earth-

orientation calibration error. In t.he case of ranging-only

navigation, measurement noise and Earth-orientation cali-

bration error were the other significant contributors to tile

overall error budget.. Earth platform errors, namely DSN
station location uncertainty and Earth-orientation calibra-

tion error, were the next most significant contributors to

the overall error budget for the Doppler-plus-ranging nav-

igation case. These results suggest that if high-precision
navigation performance is to be achieved, the error sources

requiring the most accurate modeling are spacecraft non-

gravitational accelerations and Earth plat form calibration
errors. Future work will focus on the use of Monte Carlo

sinmlation tecllniques to evaluate the sensitivity of the
enhanced orbit determination filter to a variety of truth

model assulnptions, and will include additional model pa-

rameters to account for trajectory-correct ion maneuver ex-

ecution errors and uncalibrated solar-plasma delays.
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Table 1. Mars Observer outer cruise phase trajectory character-

istics over an assumed data arc extending from E -- 194 days to

E -- 12 days.

Parameter Value

Earth-to-spacecraft range, km

Geocentric declination, deg

SEP angle, deg

80 X 106 to 330x 106

22 to 1

125 to 45

Table 2. Enhanced orbit determination filter with ground-system error model representative

of current DSN calibration accuracy.

Estimated parameter set Uncertainty (la) Remarks

Spacecraft epoch state A priori,

Position components 105 km

Velocity components 1 km/sec

Nongravitational force model

Solar radiation pressure A priori,

Radial (G_) 10% (= 0.13)

Transverse (G.IG_) 10% (= 0.01)

Anomalous accelerations Steady-state,

Radial (aT) 10 -12 km/sec :2

Transverse (a./_y) 10-12 km/sec 2

Range biases (one per station A priori,

per pass, ranging data only) 4 m

Ground system error model

DSN station locations A priori,

Spin radius (rs) 0.18 m

Z-helght (zs) 0.23 m

Longitude (),) 3.6 x 10 -8 rad

Earth orientation Steady-state,

Pole orientation 1.5 × 10 -8 rad

Rotation period 0.2 msec

Transmission media A priori,

Zenith troposphere 5 cm

(each station)

Zenith ionosphere Steady-state,

(each station) 3 cm

Constant

parameters

Constant

parameters

Markov parameters

10-day time constant

10-day time constant

Uncorrelated from

pass to pass

Constant parameters,

relative uncertainty

between stations is

1 to 2 cm

Markov parameters,

1-day time constant

12-hr time constant

Random walk,

1 cm2/hr

Markov parameters

4-hr time constant
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Table 3. Enhanced-filter error budget for DSN X-band Doppler-only navigation.

Error

source

group

B-plane dispersions

B,R, km B,T, km LTOF, sec

Epoch state 2.92 8.33 0.753

SRP parameters 10.25 27.69 2.164

Nongravitational accelerations 16.52 30.61 4.950

Ionosphere 1.87 3.82 0.891

Troposphere 3.56 6.65 1.500

Station locations 4.29 4.63 1.590

Earth orientation 6.23 14.58 3.428

Measurement noise 3.45 6.41 1.501

Total (root-sum-square) 21.72 45.90 7.024

Table 4. Enhanced-filter error budget for DSN X-band ranging-only navigation.

Error

source

group

B-plane dispersions

B,.R, km B,T, km LTOF, sec

Epoch state 0.27 0.13 0.23

SRP parameters 2.26 1.11 0.91

Nongravitational accelerations 7.27 3.54 4.13

Ionosphere 0.78 0.39 0.27

Troposphere 1.54 0.75 0.64

Station locations 5.36 2.63 2.66

Earth orientation 2.47 1.26 0.63

Range biases 2.06 1.00 0.97

Measurement noise 6.59 3.21 3.18

Total (root-sum-square) 11.98 5.86 6.08
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Table 5. Enhanced-filter error budget for DSN X-band Doppler-plus-ranging navigation.

Error

source

group

Epoch state

SRP parameters

Nongravitational accelerations

Ionosphere

Troposphere

Station locations

Earth orientation

Range biases

Measurement noise

B-plane dispersions

Be__R, km B.T, km LTOF, sec

0.10 0.05 0.10

1.57 0.76 0.64

5.73 2.83 2.87

0.87 0.41 0.56

1.46 0.69 0.81

2.99 1.53 0.97

2.98 1.50 1.26

1.40 0.67 0.68

5.1I 2.46 2.51

Total root-sum-square) 9.17 4.51 4.35
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